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FIRST-ORDER MODEL MANAGEMENT WITH VARIABLE-FIDELITY PHYSICS
APPLIED TO MULTI-ELEMENT AIRFOIL OPTIMIZATION

N. M. ALEXANDROV*, E. J. NIELSEN, R. M. LEWIS' AND W. K. ANDERSON’

Abstract structural optimization, for instance, can be found in [4].
Accounts of ecent efforts in developing metdologies
First-order approximation and model management is f@r variable-complexity modeling are relayed in [5, 6].
methodology for a systematic use of variableiigemodels The present work concerns an approach, the Approx-
or approximations in optimization. The intent of model manmation and Model Management Framework (AMMF)
agementis to attain convergence to high-fidelity solutions wiff2_10], designed to enable rapid and early integration of
minimal expense in high-fidelity computations. The savings ffigh fidelity nonlinear analyses and experimental results
terms of computationally intensive evaluations depends on {f¢o the multidisciplinary optimization process. This is
ability of the available lower-fidelity model or a suite of modelgccomplished by reducing the frequency of performing
to predict the improvement trends for the high-fidelity problemyigh-fidelity computations within a single optimization
Variable-fidelity models can be represented by data-fitting ggrocedure.
proximations, variable-resolution models, variable-convergence || recently, procedures for the use of variable-

models, or variable physical fitly models. The present fige|ity models and approximations in design had relied
work considers the use of variable-fidelfiftysics models. We 4, heyristics or engineering intuition. In addition, with
demonstrate the performance of model management on an agreay exceptions (e.g., [11], [12]), the analysis of algo-
dynamic optimization of a mit-element airfoil designed 10 rithms had focused on convergence to a solution of the ap-
operate in the transonic regime. Reynolds-averaged Nav foximate or surrogate problem ([13], [14]). The AMMF
Stokes equations represent the high-fidelity model, while the ethodology discussed here and in related papers is dis-
ler equations represent the low-fidelity model. An unstructur%guished by a systematic approach to alternating the use
mesh-based analysis code FUN2D evaluates functions and gn;ariaple-fidelity models that results in procedures that

sitivity derivatives for both models. Model management for the.o provably globally convergent to critical points or so-
present demonstration problem yields fivefold savings in tefi&ions of the high-fidelity problem.
of high-fidelity evaluations compared to optimizatidone with

T ) Model management can be, in principle, imposed on
high-fidelity computations alone.

any optimization algorithm and used with any models. In
[15], we considered AMMF schemes based on three non-
Key Words: Aerodynamic optimization, airfoil de-linear programming methods and demonstrated them on
sign, approximation concepts, approximation manage3D aerodynamic wing optimization problem and a 2D
ment, model management, nonlinear programming, saitfoil optimization problem. In both cases, Euler analy-

rogate optimization, variable-fidelity sis performed on meshes of varying degree of refinement
formed a suite of variable-resolution models. Results in-
Background dicated approximately threefold savings (similar across

the three schemes) in terms of high-fidelity function eval-
Approximations and low-fidelity models have longiations. The AMMF based on the sequential quadratic
been used in engineering design to reduce the cost of optbgramming (SQP) approach was judged to be the most
mization (e.g., [1-3]). An overview of approximations ipromising for single-discipline problems with a modest
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number of design variables, as well as for certain formyifx.) > f(x. + s.). Otherwise the step is rejected. The
lations of the MDO problem. 4+ trustregion (chosen because it interacts naturally with

The study in [15] has served as a proof of corhe bound constraints) is decreaseg.ifs small. Experi-
cept for AMMF in the case where low-fidelity modelgnce suggests that “small” be taken as less thab. If
are represented by data-fitting approximations (kriging, is close to one or greater than one (this indicates excel-
splines and polynomial response swds) or variable- lent predictive properties of the model), the trust region is
resolution models. The present work considers, argualilgubled. Otherwise, it is left unchanged.
the most challenging combination of the high and low- The conditions
fidelity models within a single optimization procedure —
that of variable-fidelity physics models. The performance ac(ze) = f(xe) 2)
of the first-order model management is demonstrated on _

. S . o Vac(z.) = Vf(z.) (3)
an aerodynamic optimization of a multi-element airfoil.
:{Jarrelilblrﬁ-ef'lsﬁltlgs;ndoiﬂ; are repre.sen.t ed by an u'nst'rua(‘:r(-]e known as the first-order consistency conditions, which
ysis run in viscous and inviscid . “ .

modes. we will discuss presently.

In the next section, we describe the AMME under in- In conventional optimizatiory. is usually a linear or

vestigation and discuss the points of interest for the cGuadratic modell of the Objecti\@ AMMF repllaces this
rent study. We then present the demonstration problgRf2!: Taylor series approximation by an arbitrary model
uired to satisfy the consistency conditions (2)—(3). Re-

followed by a discussion of the numerical experiment§4
and results){ P gardless of the properties of the low-fidelity model, the

consistency conditions force it to behave as a first-order
Taylor series approximation at points where they are sat-
isfied. Solving the subproblem of minimizing is itself

For the present demonstration, the optimal desi§h i.tergtiv.e proceo!ure that now rquire; the function and
problem is represented by the bound constrained nonfigrivative information from the low-fidelity model.
ear programming problem: First-order AMMF methods can be shown to converge
. to critical points or solutions of the high-fidelity problem
min f(x) (1) under appropriate standard assumptions of continuity and
st l<z<u, boundedness of the constituent functions and derivatives

wherez is the vector of design variables, the objectivéee [9], for instance), given that the consistency condi-
£ is a continuously differentiable nonlinear function, antens (2)-(3) are imposed at each major iterate
I < x < u denotes bound constraints on the design vari- Qualitatively, the reason a first-order AMMF con-
ables. verges to an answer of the high-fidelity problem may be
The first-order AMMF used here for solving (1) isummarized as follows. Although a lower-fidelity model
based on the trust-region strategy, which is a method@lay not capture a particular feature of the physical phe-
ogy for the improvement of global behavior of the localomenon to the same degree of accuracy (or at all) as
model-based optimization algorithms [16]. The followinigs higher-fidelity counterpart, a lower-fidelity model may
pseudo-code describes the AMMF. still have satisfactory predictive properties for the pur-
poses of finding a good direction of improvement for the
. higher-fidelity model. By imposing the consistency con-
Do until convergence: ditions, AMMF ensures that at least at the major iterates,
Select a model., such that the lower-fidelity model provides the same direction of
te(2e) = f(we) andVae(re) = V/(xe) descent as the high-fidelity counterpart. Two questions
Solve appr'oxmately fos. =z — z.: arise. How easy is it to impose the first-order consistency?
min (e + 5) How does the method perform in practice?

AMMF under investigation

Initialize z.., A,

st I<w<u The answer to the first question is that imposing the
sl < A conditions (2)—(3) is straightforward using a correction
Computep. = % technique due to Chang et al. [17] This technique cor-

rects a low-fidelity versiory;, of an arbitrary function so

UpdateA. andz. based orp. that it agrees to first-order with a given high-fidelity ver-

End do sion f;. This is done by defining the correction factor
Details of the updating strategy can be found, for instanes,
in [7]. Briefly, the pointz. is accepted if the step. re- fri(x)
sults in a simple decrease in the objective function, i.e., if Alz) = fro(@)
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Figure 2: Mesh for the inviscid model

Given the current design variable vectgy, one builds a high-fidelity model only at the point.. Thus, the high-

first-order modep3. of 3 aboutz.: fidelity information may potentially have to be computed
T at every step to re-calibrate the low-fidelity information.
Pe(@) = Blwe) + VB(xe) (2 = 2c). This would lead AMMF to become, at worst, a conven-
The local model of3 is then used to corregt, to obtain tional optimization algorithm. At its best, the AMMF
a better approximation(x) of fy;: would be able to take many steps with the corrected low-
fidelity model before resorting to re-calibration with ex-
Thi(®) = B(2) fio (%) ~ a(x) = Be(®) fio (). pensive evaluations. Which scenario actually takes place

The corrected approximatiar{z) has the properties thatdepends on the problem at hand.

a(x.) = fri(z.) andVa(z.) = V fri(z.). Zero-order or  AMMF has shown promise with low-fidelity models
higher-order corrections are easily constructed as well.represented by data-fitting approximations and variable-
Because thg-correction can make any two unrelatedesolution models. In an attempt to evaluate the poten-
functions match to first order, the framework admits té&al worst-case scenario, we are now considering manag-
wide range of models. In the worst case of performandeg variable physical fidelity models. We view this model
the subproblem will yield a good predictive stepfor the combination as the potential worst-case scenario, because
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Figure 3: Mach number contours for viscous vs. inviscid model
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Figure 4: Drag coefficient contours of the viscous and inviscid models

low-fidelity physics models are expected not to captube the Euler equations. The flow solver, FUN2D, used
the behavior of the high-fidelity counterpagscurately, for this study follows the unstructured mesh methodol-
or at all, over some or all regions of interest in the desigigy [19]. Sensitivity derivatives are provided via a hand-
space. coded adjoint approach [20].

The mesh for the viscous model depicted in Fig. 1
consists ofl 0449 nodes and@0900 triangles. The mesh
for the inviscid model, shown in Fig. 2, comprlsl=£$47
nodes and896 triangles. The Mach number ¥/,

75 the Reynolds number iBe = 9 x 109, the global
angle of attack isx = 1°.

Demonstration problem

We consider aerodynamic optimization of a two
element airfoil designed to operate in transonic con
tions [18]. The inclusion of viscous effects is very |mpor
tant for obtaining physically correct results. Therefore,
the high-fidelity model will be the Reynolds-averaged Fig. 3 depicts the Mach number contours for the vis-
Navier-Stokes equations and the low-fidelity model wiflous and inviscid model, respectively. The boundary and
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Test hi-fi eval | lo-fieval | total time | factor
PORT with hi-fi surrogates, 2 var| 15/15 negligible

AMMF with surrogates, 2 var 3/3 18/9 negligible | =5
PORT with hi-fi analyses, 2 var 14/13 ~ 12 hrs

AMMF with direct analyses, 2 vaf  3/3 19/9 A 2.41hrs| ~ 4.98

Table 1: AMMF performance vs PORT

shear layers are clearly visible in the viscous case. Bwmibstitutes in the conventional sense, i.e., they were not
cause of the importance of the viscous effects in this pralsed to provide lower-fidelity models. Instead, they sim-
lems, the use of the inviscid equations for the low-fidelipfly served to provide low-cost substitutes for both mod-
model should present an important test for the present afs for the problem components in the testing phase. Of
proach. course, such a test would never be conducted in a non-
The objective of this problem is simply to minimizeresearch setting, nor would it be considered for a problem
the drag coefficient by adjusting the global angle of atith more than a few variables. In our setting, however, it
tack and the y-displacement of the flap. In this studsaved us much time by providing an excellent approxima-
we restrict ourselves to two design variables to enable tibn of the actual functions with respect to descent charac-
sualization. The baseline case for both models was céeristics at a tiny fraction of computational cost. After we
structed atv = 1° and zeroy-displacement of the flap. ascertained the correctness of our procedures, tests were
Fig. 4 depicts the level sets of the drag coefficieepnducted directly with the flow and adjoint solver, with-
for the viscous and inviscid models. The problem aput recourse to substitutesgdause the subgites were
pears to support the worse-case scenario: not only is éx@ected to smooth out the problem to a certain degree.
low-fidelity model not a good representation of the high- The problems were first solved with single-fidelity
fidelity model but, in addition, the descent trends in ttfeodels alone by using well-known commercial optimiza-
two models are reversed. The solution for each probléian softward PORT [21], in order to obtain a baseline
is marked with a circle. Thus the problem provides a gootimber of function evaluations or iterations to find an
test of the methodology indeed. optimum. The problems were then solved with AMMF.
The computational expense necessary to calculédentical experiments were conducted with spline substi-
functions and derivatives in the viscous case is constdtes and with the actual flow and adjoint solver.
erably greater than that for the inviscid model. We con- For each experiment, performance of AMMF was
ducted our experiments on an SGOrigin™ 2000 work- evaluated in terms of the absolute number of calls to the
station with four MIPS RISC R10000 processors. Oregh and low-fidelity function and sensitivity calculations.
low-fidelity analysis took approximately 23 seconds ariBecause the time for low-fidiey computations was neg-
one low-fidelity sensitivity analysis took between 70 anlipible in comparison to the high-fidelity computations,
100 seconds. In contrast, one high-fidelity analysis towle estimated the savings strictly in terms of high-fidelity
approximately 21 minutes and one high-fidelity sensitigvaluations. Table 1 summarizes the number of function
ity analysis took between 21 and 42 minutes to compuféirst number) and derivative (second number) computa-
The measures were taken in CPU time. Thus, the tirlens expended in PORT and in AMMF.
per low-fidelity evaluation may be considered negligible Given the dissimilarity between the high-fidelity and
compared to that required for a high-fidelity evaluation.low-fidelity model, we were initially surprised to find
that the AMMF performed well: it consistently yielded
Numerical results approximately fivefold savings in terms of high-fidelity
computations. The result held both for the spline substi-
We conducted the following computational experiutes and the actual functions. Optimization applied to
ments. Because our test problem has expensive functimth cases produced nearly identical iterates.
evaluations, we first built spline substitutes both for the Following an analysis of the results, we concluded that
viscous and the inviscid model. Error analysis indicatélde savings were not surprising after all. For our combi-
that the spline fit was highly satisfactory for both modiation of models, thg-correction worked extremely well.
els. It should be emphasized that we did not use thédws is illustrated in Fig. 5. The plot on the left shows the

TThe use of names of commercial software in this paper is for accurate reporting and does tinte@msofficial @dorsement, either ex-
pressed or implied, of such products by the National Aeronautics and Space Administratiditutelfer Computer Applications to Science and
Engineering.
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Figure 5: Drag coefficient level sets of the viscous and corrected inviscid models

level sets of the high-fidelity model with the solution. The Given the present results, we are cautiously optimistic
plot on the right depicts the level sets of the low-fidelitghout several much larger test cases (&4 .yariables)
model5-corrected at the initial point. The initial point isthat are currently under investigation. Large problems
marked by a square. We note that the correction is motst be tested carefully in AMMF in order to ascertain
applied to the entire feasible region during iterations tiat its performance is not in some measure an artifact of
optimization algorithm. Here, we applied the correctiaime problem dimensionality. This does not appear to be
to the entire region to visualize the affect of the correctidhe case, because AMMF was previously tested on prob-
on the low-fidelity function. The figure clearly shows thdems with over ten variables. However, the tests currently
the correction, using the function and derivative informaenducted with realistic physical models should prove
tion at the anchor point (at this iteration - the initial pointinore conclusive, regardless of the outcome.

reversed the trend of the low-fidelity model, allowing the The performance of AMMF with variable-fidelity
optimizer to find the next iterate in the left upper corngrhysics models raises a number of intriguing questions
of the plot, marked by a circle. Similar analysis can k&bout the nature of the corrections and an optimal choice
conducted for all iterations. In fact, AMMF located thef low-fidelity models for a large set of problems. These
solution @@ = 1.6305°, flap y-displacement= —0.0048) questions are currently under investigation.

of the high-fidelity problem already at the next iteration.

The high-fidelity drag coefficient at the initial point was Acknowledgments

Cg”“al = 0.0171, the high-fidelity drag coefficient at
the solution wag'fina@l = 0.0148, a decrease of approxi-
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